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Abstract
We study the relation between T-duality and integrability. We develop the
Hamiltonian formalism for a principal chiral model on general group manifold
and on its T-dual image. We calculate the Poisson bracket of Lax connections
in the T-dual model and show that they are non-local, which is opposite to the
Poisson brackets of the Lax connection in the original model. We demonstrate
these calculations on two specific examples: sigma model on S2 and sigma
model on AdS2.

PACS number: 11.25.Tq

1. Introduction and summary

One of the most remarkable achievements in string theory in the past few years was the
discovery of the integrability of N = 4 superconformal Yang–Mills (SYM) theory in its
planar limit together with the integrability of AdS5 × S5 superstring [1–3]1. Indeed, the well-
known classical integrability of bosonic string on AdS5 ×S5 was extended to the κ-symmetric
Green–Schwarz superstring [11, 12] or to the pure spinor formulation of superstring as well
[16–30]2. For example, it was found that the classical superstring possesses an infinite number
of conserved non-local charges. These charges have their counterpart in planar gauge theory
at weak coupling in the spin-chain formulation for the dilatation operator [13, 14].

It is also believed that the integrability of the N = 4 SYM should have an impact on the
spectrum of other observables in the theory, for example on the structure of the expectation
values of certain Wilson loops. The dual formulation of these objects in the AdS/CFT
correspondence is the partition functions of open AdS5 ×S5 strings that end on some contours
at the boundary of AdS5 [35, 36]. Moreover, it turned out that the open string description
of Wilson loops is directly related to the T-duality in AdS5 × S5 [37, 38]3, where T-dual

1 For review and extensive list of references, see [4–9].
2 For review, see [31–34].
3 For review and extensive list of references, see [39–41].
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formulation appears to be important in the discovery of a connection between maximally
helicity-violating (MHV) gluon scattering amplitudes and special Wilson loops (defined on
contours formed by light-like gluon momentum vectors). The classical SO(4, 2) conformal
symmetry of the T-dual AdS5 geometry seems to be related to a mysterious ‘dual’ conformal
symmetry that was observed in the momentum-space integrands of loop integrals for planar
gluon scattering amplitudes [42–45]. From the string theory point of view, this dual conformal
symmetry of the AdS5 ×S5 sigma model could be related to the presence of hidden symmetries
in T-dual string theory. In fact, since T-duality is an on-shell symmetry or, in other words, it
maps classical solutions to the classical one and since the T-dual geometry is again AdS5 ×S5,
we can expect that the T-dual model is also integrable and consequently possesses an infinite
number of conserved charges that should correspond to generators of some symmetries of dual
Wilson lines in N = 4 SYM.

In the phase-space formulation of string theory, the statement that T-duality is on-shell
symmetry is that T-duality is canonical transformation [63, 64]. This fact has a significant
consequence on the calculation of the Poisson brackets of Lax connection in T-dual theory. In
fact, how the Lax connection in original integrable theory is mapped to its T-dual counterpart
is an important question4. These problems were recently discussed in papers [46–48]. In
particular, the paper [46] discussed the interplay between T-duality and integrability on two
examples: the two-sphere S2 and the two-dimensional anti-de Sitter space AdS2. It was argued
there that in order to perform T-duality explicitly, we have to express T-dual coordinates in
terms of the original ones. Further, the fact that this relation is non-local is also important,
and hence it is a non-trivial task to find the T-duality image of Lax connection since Lax
connection—opposite to the sigma model action—depends explicitly on the coordinate that
parameterizes the T-duality direction. On the other hand, it was shown in [46] that it is
possible to eliminate the explicit dependence of the Lax connection on the T-duality direction
coordinate with the help of some special field redefinition that preserves the flatness of the
Lax connection of the original theory. The new Lax connection depends on the derivatives of
the isometric coordinate only. Then T-duality on these flat currents can be easily implemented
and it is easy to find the T-dual flat currents.

The goal of this paper is to further study the properties of the Lax connection in the
T-dual background. We are mainly interested in the calculation of the Poisson bracket of the
T-dual Lax connections. We find an explicit form of these Poisson brackets and argue that
they have exactly the same form as the brackets introduced in [59, 60]. Then, by following the
discussion presented in these papers and reviewed in the appendix, we can argue that T-dual
theory possesses an infinite number of conserved charges that are in involution5 in the sense
that their Poisson brackets commute. On the other hand, it is desirable to find an explicit form
of matrices r, s that appear in these Poisson brackets and are crucial for the study of classical
or quantum mechanical integrability of given theory [59, 60]. We show that even though it is
straightforward to find the forms of these matrices in the case of the principal chiral model, it
is very difficult to find their forms in the T-dual model. In fact, we will argue that the original
constant matrices r, s map under T-duality to non-local expressions. We claim that this is in
accord with the observation that local charges map to non-local ones under T-duality.

The organization of this paper is as follows. In section 2, we review the calculation of
the Poisson bracket of the Lax connection in the case of a S2 sigma model and show that in
this case the matrices r, s are constant. Then in section 3, we perform the calculation of the
Poisson bracket of the Lax connection for the sigma model that is T-dual to the sigma model

4 For some earlier works that discuss this problems, see [50–58].
5 Of course, up the subtlety of the definition of the Poisson bracket of monodromy matrices in the case when the
initial and final points coincide. For a discussion of these problems, see [59–62].
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on S2. We review the construction of the Lax connection performed in [46] and express it as
a function of canonical variables. Then we calculate the Poisson brackets of Lax connection
for T-dual action and argue for the integrability of given theory. In section 4, we study another
example of the T-dual sigma model that arises by performing T-duality along the non-compact
direction of AdS2. We again calculate the Poisson brackets of Lax connection that is an image
of the original Lax connection under T-duality. We however stress that T-duality in the case of
the AdS2 background is special since now T-duality along the non-compact direction leads to
a background that is again AdS2. It is then natural to presume that this background possesses
Lax connection that has the same form as the original one, now expressed as a function of
T-dual variables. One can then expect that these two Lax connections are related, and it was
shown, for example, in [47] this is really true. We plan to discuss the Hamiltonian formulation
of these Lax connections and relations between them in a forthcoming publication. Finally, in
section 5, we present a general analysis of the calculation of the Poisson bracket between Lax
connections in the sigma model that is related to the original one by duality that is canonical
transformation in phase space. We define the Lax connection in a dual model in two steps. We
first perform the gauge transformation that preserves the flatness of a given Lax connection.
In the second step, we express this Lax connection as a function of phase space variables
that are related to the original ones by canonical transformations. In fact, it is well known
that T-duality can be considered as some kind of canonical transformations. We find that the
Poisson brackets of dual Lax connections are non-local; however, their forms again imply that
the new theory possesses an infinite number of conserved charges that are in involution.

Let us outline our result. We derive Poisson brackets of Lax connections in sigma models
that are T-dual to original integrable models. We argue that the new integrable models contain
an infinite number of conserved charges that are in involutions even if the Poisson brackets of
Lax connections are non-local and the matrices r, s are functions of phase space variables. We
hope that these calculations can be useful for a further study of relations between T-duality
and integrability.

2. Review of the S2 sigma model and Poisson bracket of its Lax connection

In this section, we give a brief review of the calculation of the Poisson bracket of the Lax
connection of the sigma model on S2. The main goal is to demonstrate the difference between
the straightforward calculations given here with respect to the analysis of the Poisson bracket
of the Lax connection in the case of the T-dual model that will be presented in the following
section.

We start with the action that governs the dynamics of the string on S2:

S = −1

2

∫
d2σ

√−γ γ αβ[∂α�∂β� + sin2 �∂α	∂β	], (2.1)

where γαβ, α, β = 0, 1, is the worldsheet metric and σα, σ 0 = τ and σ 1 = σ are the
worldsheet coordinates.

We start with the observation that this theory possesses Noether currents in the form

j 1 = − 1√
2
[sin(	)d� + sin � cos � cos 	 d	],

j 2 = − 1√
2
[cos 	 d� − sin � cos � sin 	 d	], (2.2)

j 3 = − 1√
2

sin2 � d	,

where df ≡ ∂αf dσα . Then, it is easy to see that

γ αβjA
α jB

β KAB = − 1
2γ αβ[∂α�∂β� + sin2 �∂α	∂β	], (2.3)

3
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where A,B, . . . = 1, 2, 3 and the Cartan–Killing form is given by

KAB = Tr(TATB) = diag(−1,−1,−1). (2.4)

Then using this result, we can rewrite action (2.1) in the form

S =
∫

d2σ
√−γ γ αβ Trjαjβ (2.5)

that clearly demonstrates the fact that the dynamics of string on S2 is governed by the principal
model action. Further, we observe that currents (2.3) are flat:

∂αjA
β − ∂βjA

α + jB
α jC

β f A
BC = 0, (2.6)

where the structure constants are defined as

f A
BC = − 1√

2
εBCDKDA. (2.7)

Here, εABC is totally antisymmetric with ε123 = −1. In what follows, we will be more general
and introduce the general coordinates xM on manifold M that in the particular case of M = S2

are xM = (�,	). As the next step, we introduce EA
M in order to write the current jA in the

form

jA
α = EA

M∂αxM. (2.8)

Then the conjugate momenta pM defined as δS
δ∂τ xM take the form

pM = √−γ γ ταKABEA
MEB

N∂αxN . (2.9)

Further, we define the current jA
P as

jA
P = −√−γ γ ταEA

M∂αxM = −KABEM
B pM, (2.10)

where EM
B is inverse of EA

M . Then it is easy to calculate the Poisson bracket{
jA
σ (σ ), jB

P (σ ′)
} = −EA

N(σ)EN
C (σ ′)KBC∂σ δ(σ − σ ′) − ∂NEA

M∂σxMKBCEA
Cδ(σ − σ ′)

= −KAB∂σ δ(σ − σ ′) − jD
σ f A

DC KCBδ(σ − σ ′), (2.11)

using

∂σ ′δ(σ − σ ′) = −∂σ δ(σ − σ ′),

f (σ ′)∂σ δ(σ − σ ′) = f (σ)∂σ δ(σ − σ ′) + ∂σf (σ )δ(σ − σ ′)
(2.12)

and also the relations

∂NEA
M − ∂MEA

N + EB
MEC

Nf A
BC = 0, ∂P EN

C = −EM
C ∂P ED

MEN
D (2.13)

that follow from the fact that the current jA = EA
M dxM is flat. In the same way, we obtain{

jA
P (σ ), jB

P (σ ′)
} = −jC

P (σ )f A
CD KDBδ(σ − σ ′). (2.14)

Now we are ready to determine the Poisson brackets of Lax connection for the S2 sigma
model. Note that the Lax connection is defined as

JA = ajA + b ∗ jA, (2.15)

where the Hodge dual is defined as

(∗df )α = −√−γ ∂γ f γ γ δεδα (2.16)

for any function f . Further, a, b given in (2.14) depend on spectral parameter 
 as

a = 1
2 [1 ± cosh 
], b = 1

2 sinh 
 (2.17)
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so that a2 − a − b2 = 0. Explicitly, for spatial components of JA
σ we obtain

JA
σ = ajA

σ − b
√−γ γ τβjA

β = ajA
σ + bjA

P . (2.18)

Then using (2.11) and (2.14), we determine the Poisson brackets between the spatial
components of Lax connections for two different spectral parameters 
,
′:{
JA

σ (σ,
), JB
σ (σ ′,
′)

} = −ab′KAB∂σ δ(σ − σ ′) + ba′KAB∂σ ′δ(σ − σ ′)

− ab′jD
σ f A

DC KCBδ(σ − σ ′) + ba′jD
σ f B

DC KCAδ(σ − σ ′)
− bb′jC

P f A
CD KDBδ(σ − σ ′). (2.19)

Comparing with equation (A.16), we find

BAB = ba′KAB, CAB = −ab′KAB,

AAB = −ab′jD
σ f A

DC KCB − ba′jD
σ f A

DC KCB − bb′jC
P f A

CD KDB.
(2.20)

Fortunately, in this particular case, we can rather easily guess the form of matrices rAB, sAB .
In fact, let us presume that the right side of equation (2.19) can be written in the form

(r − s)DBf A
DC JC

σ (
) + (r + s)ADf B
DC JC

σ (
′) + ∂σ (r − s)ABδ(σ − σ ′)− 2sAB∂σ δ(σ − σ ′).
(2.21)

Then comparing expressions proportional to ∂σ δ(σ − σ ′) in (2.19) and (2.21), we obtain

sAB = 1
2KAB(ab′ + ba′). (2.22)

Further, we presume that

(r − s)AB = AKAB, (r + s)AB = BKAB, (2.23)

where A,B are constants. Inserting these expressions into (2.21) and comparing with the
right side of (2.19), we find

B = − b2a′

a′b − b′a
, A = − b′2a

a′b − b′a
(2.24)

and then using (2.22), we finally obtain

rAB = − 1

2(a′b − b′a)
(b′2a2 + a′2b2 − 2b′2b2). (2.25)

It is important that in the case of a principal chiral model, the objects rAB, sAB are constants
and depend on spectral parameters 
,
′ only. On the other hand, the situation is much more
involved in the case of a T-dual sigma model.

3. Poisson brackets of Lax connection in T-dual theory on S2

In this section, we determine the Poisson bracket of Lax connections in the sigma model that
is related to the sigma model on S2 by T-duality along the compact U(1) isometry cycle. Since
the procedure for deriving T-dual action from the sigma model action on S2 is nicely described
in the paper [46], we use the results derived there and immediately write the T-dual action

S = −1

2

∫ (
d� ∗ d� +

1

sin2 �
d	̃ ∗ d	̃

)

= −1

2

∫
d2σ

√−γ γ αβ

(
∂α�∂β� +

1

sin2 �
∂α	̃∂β	̃

)
, (3.1)

5
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where the dual variable 	̃ is related to 	 through the relation

d	̃ = sin2 � ∗ d	. (3.2)

While the original action was SO(3) invariant, the manifest symmetry of the T-dual action
(3.1) is simply the U(1) shift of 	̃. As was argued in [46], the full SO(3) symmetry group is
hidden and it is realized non-locally.

As usual in the Hamiltonian formalism, we first determine from action (3.1) the momenta
P�, P	̃ conjugate to �, 	̃:

P� = −√−γ γ τα∂α�, P	̃ = − 1

sin2 �

√−γ γ τα∂α	̃ (3.3)

with corresponding Poisson brackets

{	̃(σ ), P	̃(σ ′)} = δ(σ − σ ′), {�(σ), P�(σ ′)} = δ(σ − σ ′). (3.4)

To proceed further, we have to say few words considering the problem of how the
Lax connection behaves under T-duality transformation. It is well known that T-duality
transformation (3.2) cannot be directly performed on currents (2.15) and (2.18) since they
depend not only on d	, but also explicitly on coordinate 	. A solution of this problem is
based on the observation that for any g ∈ G, the new current

J ′ = g−1Jg + g−1 dg (3.5)

is again flat6. Then there exists an element g ∈ SO(3) that transforms the original currents
into new ones that depend on 	 only through its derivatives. The forms of the matrix g and
corresponding current J ′ were found in [46] with the result

J ′1 = − 1√
2

sin � cos �(a d	 + b ∗ d	),

J ′2 = − 1√
2
(a d� + b ∗ d�), (3.6)

J ′3 = − 1√
2

sin2 �(a d	 + b ∗ d	) +
√

2 d	.

Then using (3.2) we define T-dual flat currents as Ĵ A = J ′A(	 → 	̃). Explicitly, their spatial
components take the form

J̃ 1
σ = − 1√

2

cos �

sin �
(−a

√−γ γ τα∂α	̃ + b∂σ 	̃),

J̃ 2
σ = − 1√

2
(a∂σ� − b

√−γ γ τα∂α�), (3.7)

J̃ 3
σ = − 1√

2
(b∂σ 	̃ − a

√−γ γ τα∂α	̃) −
√

2

sin2 �

√−γ γ τβ∂β	̃

or alternatively as functions of phase space variables (�, P�, 	̃, P	̃):

J̃ 1
σ = − 1√

2
a cos � sin �P	̃ +

1√
2
b

cos �

sin �
∂σ 	̃,

J̃ 2
σ = − 1√

2
a∂σ� +

1√
2
bP�, (3.8)

J̃ 3
σ = − 1√

2
b∂σ 	̃ +

a√
2

sin2 �P	̃ +
√

2P	̃.

6 We will discuss the general procedure in section 5.
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Then using (3.4), we calculate the Poisson brackets of the spatial components of Lax
connections for two spectral parameters 
,
′. After some straightforward calculations,
we obtain{
Ĵ A

σ (σ,
), Ĵ B
σ (σ ′,
′)

} = AAB(σ,
,
′)δ(σ − σ ′)BAB(σ, σ ′,
,
′)∂σ ′δ(σ − σ ′)

+ CAB(σ, σ ′,
,
′)∂σ δ(σ − σ ′), (3.9)

where

Aαγ,βδ(σ,
,
′) = AAB(σ,
,
′)(TA)αβ(TB)γ δ

= −1

2

[
P	̃ab′(sin2 � − cos2 �) + bb′ 1

sin2 �
∂σ 	̃

]
(T1)αβ(T2)γ δ

+
1

2

[
P	̃ba′(sin2 � − cos2 �) + bb′ 1

sin2 �
∂σ 	̃

]
(T2)αβ(T1)γ δ

− ba′ sin � cos �(T2)αβ(T3)γ δ + ab′ sin � cos �(T3)αβ(T2)γ δ, (3.10)

Cαγ,βδ(σ, σ ′,
,
′) = CAB(σ, σ ′,
,
′)(TA)αβ(TB)γ δ

= 1

2
ba′ cos �(σ)

sin �(σ)
cos �(σ ′) sin �(σ ′)(T1)αβ(T1)γ δ

+

(
1

2
ba′ cos �(σ)

sin �(σ)
sin2 �(σ ′) − b

cos �(σ)

sin �(σ)

)
(T1)αβ(T3)γ δ

+
1

2
ab′(T2)αβ(T2)γ δ +

1

2
ba′ cos �(σ ′) sin �(σ ′)(T3)αβ(T1)γ δ

+

(
1

2
ba′ sin2 �(σ ′) − b

)
(T3)αβ(T3)γ δ (3.11)

and

Bαγ,βδ(σ, σ ′,
,
′) = BAB(σ, σ ′,
,
′)(TA)αβ(TB)γ δ

= −1

2
ab′ cos �(σ) sin �(σ)

cos �(σ ′)
sin �(σ ′)

(T1)αβ(T1)γ δ

− 1

2
ab′ cos �(σ) sin �(σ)(T1)αβ(T3)γ δ − 1

2
a′b(T2)αβ(T2)γ δ

+

(
−1

2
ab′ sin2 �(σ)

cos �(σ ′)
sin �(σ ′)

+ b′ cos �(σ ′)
sin �(σ ′)

)
(T3)αβ(T1)γ δ

+

(
−1

2
ab′ sin2 �(σ) + b′

)
(T3)αβ(T3)γ δ. (3.12)

As a check, note that AAB(σ,
,
′), CAB(σ, σ ′,
,
′) and BAB(σ, σ ′,
,
′) obey the
consistency relations (A.10). Using these results, we can partially determine the matrices
r, s:

sαγ,βδ(σ,
,
′)
1

2
(Bαγ,βδ(σ, σ,
,
′) − Cαγ,βδ(σ, σ,
,
′))

= − 1

4

[
(ab′ + ba′) cos2 �(T1)αβ(T1)γ δ + (a′b + ba′)(T2)αβ(T2)γ δ

+

(
(ab′ + ba′) cos � sin � − 2b

cos �

sin �

)
(T1)αβ(T3)γ δ

7



J. Phys. A: Math. Theor. 42 (2009) 285401 J Klusoň

+

(
(ab′ + a′b) cos � sin � − 2b′ cos �

sin �

)
(T3)αβ(T1)γ δ

+((ab′ + ba′) sin2 � − 2(b′ + b′))(T3)αβ(T3)γ δ

]
(3.13)

and

rαγ,βδ(σ,
,
′) = 1
2 [Bαγ,βδ(σ, σ,
,
′) + Cαγ,βδ(σ, σ,
′,
)] + r̂αγ,βδ(σ,w, v)

= − 1
4 [(ab′− ba′) cos2 �(T1)αβ(T1)γ δ + (ab′− ba′) cos � sin �(T1)αβ(T3)γ δ

− (ab′ − a′b) cos � sin �(T3)αβ(T1)γ δ + (a′b − ba′)(T2)αβ(T2)γ δ

+ ((ab′ − ba′) sin2 � − 2(b′ − b))(T3)αβ(T3)γ δ]

+ r̂AB(σ,
,
′)(TA)αβ(TB)γ δ, (3.14)

where r̂AB is a solution of the differential equation (A.13). Unfortunately, due to the fact
that A, B, C explicitly depend on the phase space variables it is very difficult to solve this
differential equation (A.13) and we were not able to find an explicit form of r̂AB . On the other
hand, it is important to stress that the Poisson brackets of Lax connections take the form as in
(A.9) and hence following the arguments given in the appendix, we can argue that the T-dual
sigma model contains an infinite number of conserved charges that are in involution in the
sense that their Poisson brackets vanish. In summary, T-dual theory is classically integrable
as well in spite of the fact that the Poisson bracket structure is intricate.

4. Second example: T-dual AdS2 string

As the second example of T-dual theory, we consider the case of a bosonic sigma model
on AdS2 and its T-dual version. Recall that the dynamics of the bosonic string on AdS2 is
governed by an action

S = −1

2

∫
d2σ

1

Y 2

√−γ γ αβ(∂αX∂βX + ∂αY∂βY ). (4.1)

With analogy with the previous section, we introduce three currents:

j 1
α = 1

2
√

2Y 2
((1 + (X2 − Y 2))∂αX + 2XY∂αY ),

j 2
α = 1

2
√

2Y 2
((1 − (X2 − Y 2))∂αX − 2XY∂αY ), (4.2)

j 3
α = − 1√

2Y 2
(X∂αX + Y∂αY )

that are conserved

∂α[
√−γ γ αβjβA] = 0, A = 1, 2, 3. (4.3)

Further, it can be shown that these currents are flat:

∂αjA
β − ∂βjA

α + jB
α jC

β f A
BC = 0, (4.4)

where f A
BC = − 1√

2
εBCDKDA and the Cartan–Killing form KAB is equal to KAB =

diag(−1, 1, 1). Then it is easy to see that the sigma model action (4.1) can be expressed
as a principal chiral model with the corresponding Lax connection

J = aj + b ∗ j, a = 1
2 [1 ± cosh 
], b = 1

2 sinh 
. (4.5)

8
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Our goal is to develop the Hamiltonian formalism for T-dual theory where T-duality is
performed along the X direction [46] so that the T-dual action takes the form

S = −1

2

∫
d2σ

√−γ

[
1

Ỹ 2
γ αβ∂αX̃∂βX̃ +

1

Ỹ 2
γ αβ∂αỸ ∂βỸ

]
, (4.6)

where we also introduced Ỹ defined as

Ỹ = 1

Y
. (4.7)

It is clear that action (4.6) again describes the dynamics of string on the AdS2 background
and hence the Lax connection for given theory is the same as the original one (4.5) when we
replace X and Y with X̃ and Ỹ . On the other hand, there exists a Lax connection in the T-dual
background that is related to the original Lax connection by gauge transformations and then
by substitutions X, Y → X̃, Ỹ . This Lax connection was derived in [46] and takes the form

Ĵ 1
α = − 1

2
√

2

(1 − Ỹ 2)

Ỹ 2
(−a∂γ X̃

√−γ γ γ δεδα + b∂αX̃) −
√

2
1

Ỹ 2
∂γ X̃

√−γ γ γ δεδα,

Ĵ 2
α = 1

Ỹ
√

2
(a∂αỸ − b∂γ Ỹ

√−γ γ γ δεδα), (4.8)

Ĵ 3
α = − 1

2
√

2

(1 + Ỹ 2)

Ỹ 2
(a∂γ X̃

√−γ γ γ δεδα − b∂αX̃) +
√

2
1

Ỹ 2
∂γ X̃

√−γ γ γ δεδα.

To proceed further, we derive from (4.6) the conjugate momenta

PX̃ = − 1

Ỹ 2

√−γ γ τα∂αX̃, PỸ = − 1

Ỹ 2

√−γ γ τα∂αỸ . (4.9)

Then the spatial components of Lax connection expressed as functions of canonical variables
are equal to

Ĵ 1
σ = − 1

2
√

2

(1 − Ỹ 2)

Ỹ 2
(aỸ 2PX̃ + b∂σ X̃) +

√
2PX̃,

Ĵ 2
σ = 1√

2Ỹ
(a∂σ Ỹ + bỸ 2PỸ ), (4.10)

Ĵ 3
σ = − 1

2
√

2

(1 + Ỹ 2)

Ỹ 2
(aỸ 2PX̃ + b∂σ X̃) −

√
2PX̃.

Now we are ready to determine the Poisson bracket of spatial components of the Lax
connection. Again, after some calculations we derive the Poisson brackets that have the
same form as in (A.5) where the matrices A, C and B are equal to

Aαγ,βδ(σ,
,
′) =
[

b′

2Ỹ 2
(aỸ 2PX̃ + b∂σ X̃) − 1

2
ab′(1 − Ỹ 2)Ỹ 2PX̃

]
(T 1)αβ(T 2)γ δ

+

[
− b

2Ỹ 2
(a′Ỹ 2PX̃ + b′∂σ X̃) +

1

2
ba′(1 − Ỹ 2)Ỹ 2PX̃

]
(T 2)αβ(T 1)γ δ

+
1

2Ỹ
(ba′ − ab′)∂σ Ỹ (T 2)αβ(T 2)γ δ

+

[
b

2Ỹ 2
(a′Ỹ 2PX̃ + b′∂σ X̃) +

1

2
ba′(1 + Ỹ 2)PX̃

]
(T 2)αβ(T 3)γ δ

−
[

b′

2Ỹ 2
(aỸ 2PX̃ + b∂σ X̃) +

1

2
ab′(1 + Ỹ 2)PX̃

]
(T 3)αβ(T 2)γ δ (4.11)

9
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and

Cαγ,βδ(σ, σ ′,
,
′) =
[
ba′

8

(1 − Ỹ 2(σ ))

Ỹ 2(σ )
(1 − Y 2(σ ′)) − b

2

(1 − Ỹ 2(σ ))

Ỹ 2(σ )

]
(T 1)αβ(T 1)γ δ

+

[
ba′

8

(1 − Ỹ 2(σ ))

Ỹ 2(σ )
(1 + Ỹ 2(σ ′)) +

b

2

(1 − Ỹ 2(σ ))

Ỹ 2(σ )

]
(T 1)αβ(T 3)γ δ

+
ab′

2

Ỹ 2(σ ′)
Ỹ (σ )

(T 2)αβ(T 2)γ δ

+

[
ba′

8

(1 + Ỹ 2(σ ))

Ỹ 2(σ )
(1 − Ỹ 2(σ ′)) − b

2

1 + Ỹ 2(σ )

Ỹ 2(σ )

]
(T 3)αβ(T 1)γ δ

+

[
ba′

8

(1 + Ỹ 2(σ ))

Ỹ 2(σ )
(1 + Ỹ 2(σ ′)) − b

2

(1 + Ỹ 2(σ ))

Ỹ 2(σ )

]
(T 3)αβ(T 3)γ δ,

Bαγ,βδ(σ, σ ′,
,
′) = −
[
ab′

8
(1 − Ỹ 2(σ )

(1 − Ỹ 2(σ ′))
Ỹ 2(σ ′)

− 1

2

(1 − Ỹ 2(σ ′))
Ỹ 2(σ ′)

b′
]

(T 1)αβ(T 1)γ δ

−
[
ab′

8
(1 − Ỹ 2(σ ))

(1 + Ỹ 2(σ ′))
Ỹ 2(σ ′)

− b′

2

(1 + Ỹ 2(σ ′))
Ỹ 2(σ ′)

]
(T 1)αβ(T 3)γ δ

− ba′

2

Ỹ 2(σ )

Ỹ (σ ′)
(T 2)αβ(T 2)γ δ

−
[
ab′

8
(1 + Ỹ 2(σ ))

(1 − Ỹ 2(σ ′))
Ỹ 2(σ ′)

+
b′

2

(1 − Ỹ 2(σ ′))
Ỹ 2(σ ′)

]
(T 3)αβ(T 1)γ δ

−
[
a′b
8

(1 + Ỹ 2(σ ))
(1 + Ỹ 2(σ ′))

Ỹ 2(σ ′)
− b′

2

(1 + Ỹ 2(σ ′))
Ỹ 2(σ ′)

]
(T 3)αβ(T 3)γ δ.

(4.12)

As a check, note that matrices (4.11) and (4.12) obey the consistency relations (A.6). Further,
we can also determine the matrix sAB ; however, we are not able to fully determine rAB due
to the fact that the matrices A, B, C are functions of phase space variables. It is clear that the
theory is classically integrable since we can in principle find an infinite number of charges
that are in involutions. However, the consequence of the non-local nature of the T-dual Lax
connection is that the matrices r, s now explicitly depend on phase space variables and are
non-local. On the other hand, the case of AdS2 is exceptional since we know that its T-dual
image is again AdS2 so that we can find Lax connection corresponding to the standard principal
chiral with constant r and s matrices. We are not going to study the relations between these
two Lax connections in this paper. We hope to return to the study of this problem in a future
publication.

5. General procedure

In this section, we consider a general situation when we have a principal chiral model with a
field g(σ ) that maps the string worldsheet into some group G with Lie algebra g. Further, we
presume that the Lie algebra g has generators TA,A = 1, . . . , dim(g), that obey the relation

[TA, TB] = f C
AB TC. (5.1)

From g(x), we can construct a current j in the form

j = g−1 dg ≡ EA
M dxMTA, (5.2)

10
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where by definition

dj + j ∧ j = 0, (5.3)

and where we introduced sigma model coordinates xM . Then the dynamics of the theory is
governed by the action

S = −1

2

∫
d2σ

√−γ γ αβKABEA
M∂αxMEB

N∂βxN, (5.4)

where KAB = Tr(TATB). As we reviewed in section 2, the principal chiral model possesses
Lax connection J = aj + b ∗ j that is flat:

dJ + J ∧ J = 0 (5.5)

for a = 1
2 [1 ± cosh 
] and b = 1

2 sinh 
, where 
 is a spectral parameter.
The principal chiral model has an important property that when we perform the gauge

transformation from g ∈ G on the original Lax connection

J ′ = g−1Jg + g−1 dg, (5.6)

we obtain the fact that the new one is again flat:

dJ ′ + J ′ ∧ J ′ = g−1(dJ + J ∧ J )g = 0. (5.7)

To proceed further, we write the gauge transformation (5.6) in the component formalism.
Since J ′ = J ′ATA, we obtain

J ′A = JC�A
C + eA, (5.8)

where

g−1 dg = eATA, �CB = Tr(g−1TCgTB), �A
C = �CBKBA, (5.9)

where generally �A
C and eA are functions of phase space variables. Our goal is to determine

the Poisson bracket of the Lax connection in T-dual theory. The first step in this direction is
to determine the Poisson bracket of the Lax connection J ′. Using (5.8), we obtain{
J ′A

σ (σ,
) , J ′B
σ (σ ′, �)

} = {
eA
σ (σ ), eB

σ (σ ′)
} {

eA
σ (σ ), J C

σ (�, σ ′)
}
�B

C(σ ′)

+
{
eA
σ (σ ),�B

C(σ ′)
}
JC

σ (�, σ ′) +
{
JC

σ (
, σ), eB
σ (σ ′)

}
�A

C(σ)

+ JC
σ (
, σ)

{
�A

C(σ), eB
σ (σ ′)

}
+ �A

C(σ)
{
JC

σ (
, σ), JD
σ (�, σ ′)

}
�B

D(σ ′)

+
{
JC

σ (
, σ),�B
D(σ ′)

}
�A

C(σ)JD
σ (�, σ ′)

+ JC
σ (
, σ)

{
�A

C(σ), JD
σ (�, σ ′)

}
�B

D(σ ′)

+ JC
σ (σ,
)

{
�A

C(σ),�B
D(σ ′)

}
JB

σ (σ ′, �). (5.10)

Let us now presume that g is a function of xM only. Then the spatial component eA
σ depends

on xM and their derivatives xM and does not depend on pM . It is also clear that �B
A depends

on xM only. Then we obtain{
eA
σ (σ ), eB

σ (σ ′)
} = 0,

{
eA
σ (σ ),�C

B(σ ′)
} = 0,

{
�B

A(σ),�D
C (σ ′)

} = 0. (5.11)

Then, using the above arguments and the fact that JC
σ is linear in momenta we can presume

that{
eA
σ (σ ), J B

σ (σ ′,
)
} = EAB(σ, σ ′,
)∂σ δ(σ − σ ′)

+FAB(σ, σ ′,
)∂σ ′δ(σ − σ ′) + GAB(σ,
)δ(σ − σ ′), (5.12){
�B

A(σ), JC
σ (�, σ ′)

} = �̃BC
A (σ, �)δ(σ − σ ′).

11
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Further, let us presume that Poisson brackets between JA
σ (σ,
) and JB

σ (σ ′, �) take the form{
JA

σ (σ,
), JB
σ (σ ′, �)

} = AAB(σ,
,�)δ(σ − σ ′)

+ BAB(σ, σ ′,
, �)∂σ ′δ(σ − σ ′) + CAB(σ, σ ′,
, �)∂σ δ(σ − σ ′). (5.13)

Then if we insert this expression into (5.10), we obtain the fact that the Poisson bracket of Lax
connections J ′ has the same form as (5.13):{
J ′A

σ (σ,
), J ′B
σ (σ ′, �)

} = A′AB(σ,
,�)δ(σ − σ ′)

+ C′AB(σ, σ ′,
, �)∂σ δ(σ − σ ′) + B′AB(σ, σ ′,
, �)∂σ ′δ(σ − σ ′), (5.14)

where

A′AB(σ,
,�) = GAC(σ, �)�B
C(σ ) − �A

C(σ)GBC(σ,
) + �A
C(σ)ACD(σ,
,�)�B

D(σ)

− JD
σ (�, σ )�̃BC

D (σ,
)�A
C(σ ) + JC

σ (
, σ)�̃DA
C (σ, �)�B

D(σ),

B′AB(σ, σ ′,
, �) = FAC(σ, σ ′, �)�B
C(σ ′) − �A

C(σ)EBC(σ ′, σ,
)
(5.15)

+ �A
C(σ)BCD(σ, σ ′,
, �)�B

D(σ ′),
C′AB(σ, σ ′,
, �) = EAC(σ, σ ′, �)�B

C(σ ′) − �A
C(σ)FBC(σ ′, σ,
)

+ �A
C(σ)CCD(σ, σ ′,
, �)�B

D(σ ′).

Now we are ready to calculate the Poisson brackets of Lax connection in T-dual theory. Let
us denote ηI (σ ) = (x1(σ ), . . . , xn(σ ), p1(σ ), . . . , pn(σ )), I = 1, . . . , 2n, where n is the
dimension of M, and introduce a symplectic structure JIJ (σ, σ ′) defined as

J =
(

0 In×nδ(σ − σ ′)
−In×nδ(σ − σ ′) 0

)
. (5.16)

Then the Poisson bracket of two functions F(η),G(η) can be written as

{F,G}η =
∫

dσ dσ ′
(

δF

δηI (σ )
JIJ (σ, σ ′)

δG

δηJ (σ ′)

)
. (5.17)

For example, if F = xN(σ ),G = pM(σ ′), we obtain

{xN(σ ), pM(σ ′)} = δN
Mδ(σ − σ ′) (5.18)

or more covariantly

{ηI (σ ), ηJ (σ ′)}η = JIJ (σ, σ ′). (5.19)

An important property of T-duality is that it is a sort of canonical transformation. More
precisely, let us denote the variables in T-dual theory as η̃I = (x̃M(σ ), p̃M(σ )) and presume
that they can be expressed as functions of original variables:

η̃I (σ ) = η̃I (η(σ )). (5.20)

Now if the transformation from η to η̃ is canonical, we have the fact that the matrix

MI
J (σ, σ ′) = δη̃I (σ )

δηJ (σ ′)
(5.21)

preserves the symplectic structure in the sense that∫
dx dyMI

K(σ, x)JKL(x, y)MJ
L(y, σ ′) = JIJ (σ, σ ′). (5.22)

Using this fact, we immediately obtain

{η̃I (σ ), η̃J (σ )}η̃ = JIJ (σ, σ ). (5.23)

12
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This expression implies that all Poisson brackets are invariant under canonical transformations.
In fact, let us consider two functionals F(η) and G(η). Then the invariance of the Poisson
bracket under the canonical transformation (5.23) implies

{F(η),G(η)}η = {F(η̃),G(η̃)}η̃, (5.24)

where η and η̃ are related by canonical transformation. Then if we apply these considerations
to the case of Lax connections in original and T-dual theories, we obtain{
Ĵ A

σ (η̃(σ ),
), Ĵ B
σ (η̃(σ ′), �)

}
η̃

= {
Ĵ A

σ (
, η(σ )), Ĵ B
σ (η(σ ′), �)

}
η

= A′AB(η(σ ),
, �)δ(σ − σ ′) + C′AB(η(σ ), η(σ ′),
, �)∂σ δ(σ − σ ′)
+ B′AB(η(σ ), η(σ ′),
, �)∂σ ′δ(σ − σ ′)

= ÃAB(η̃(σ ),
, �)δ(σ − σ ′) + C̃AB(η̃(σ ), η̃(σ ′),
, �)∂σ δ(σ − σ ′)
+ B̃AB(η̃(σ ), η̃(σ ′),
, �)∂σ ′δ(σ − σ ′), (5.25)

where

ÃAB(η̃(σ ),
, �) ≡ A′AB(η(η̃(σ )),
, �),

B̃AB(η̃(σ ), η̃(σ ′),
, �) ≡ B′AB(η(η̃(σ )), η(η̃(σ ′)),
, �), (5.26)

C̃AB(η̃(σ ), η̃(σ ′),
, �) ≡ C′AB(η(η̃(σ )), η(η̃(σ ′)),
, �),

and where in the first step we used (5.14) and in the second one we expressed (5.15) as
functions of η̃. This result implies that we can express the Poisson bracket of Lax connections
in T-dual theory using the known form of the original Lax connection JA

σ and the known form
of eA

σ ,�B
A that are, in the final step, expressed as functions of T-dual variables. Then it is

clear from (5.15) that the dual theory is again classically integrable in the sense that there
is an infinite number of integrals of motion that are in involution. On the other hand, the
complicated form of matrices Ã, B̃, C̃ implies that generally the matrices s̃ and r̃ are functions
of phase space variables. Moreover, we can also expect that r̃ is non-local due to the fact that
˜̂r is a solution of the differential equation (A.13) with tilded functions Ã, B̃, C̃.
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Appendix. Review of the basic properties of the monodromy matrix

In this appendix, we review the properties of the monodromy matrix, following [59, 60]. The
monodromy matrix Tαβ(σ, σ ′,
), where 
 is a spectral parameter and α, β correspond to
matrix indices, can be defined as

∂σTαβ(σ, σ ′,
) = Aαγ (σ,
)Tγβ(σ, σ ′,
),

∂σ ′Tαβ(σ, σ ′,
) = −Tαγ (σ, σ ′,
)Aγβ(σ ′,
)
(A.1)

with the normalization condition

Tαβ(σ, σ,
) = δαβ (A.2)

and

T −1
αβ (σ, σ ′,
) = Tαβ(σ ′, σ,
). (A.3)

Note that in our notation, Aαβ(σ,
) is the spatial component of the Lax connection.
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The main interest in the theory of integrable systems is the Poisson bracket between T (
)

and T (�). As was shown in a nice way in [59], the Poisson bracket between Tαβ(σ, σ ′,
)

and Tγ δ(ξ, ξ ′, �), where all σ, σ ′, ξ, ξ ′ are distinct, is equal to

{Tαβ(σ, σ ′,
), Tγ δ(ξ, ξ ′, �)} =
∫ σ ′

σ

dσ1

∫ ξ ′

ξ

dξ1Tασ1(σ, σ1,
)Tγρ1(ξ, ξ1, �)

× {
Aσ1σ2(σ1,
),Aρ1ρ2(ξ1, �)

}
Tσ2β(σ1, σ

′,
)Tρ2δ(ξ1, ξ
′, �). (A.4)

The above result suggests that the fundamental role in the theory of integrable systems is the
role of a Poisson bracket between the spatial components of the Lax connection. Let us now
presume that the Poisson bracket of the spatial components of the Lax connection A(σ,
)

and A(σ ′, �) takes the form

{Aαβ(σ,
),Aγ δ(σ
′, �)} = Aαγ,βδ(σ,
, �)δ(σ − σ ′)

+ Bαγ,βδ(σ, σ ′,
, �)∂σ ′δ(σ − σ ′) + Cαγ,βδ(σ, σ ′,
, �)∂σ δ(σ − σ ′), (A.5)

where due to the antisymmetric property of Poisson brackets the functions A, B, C obey
consistency relations

Aαγ,βδ(σ,
, �) = −Aγα,δβ(σ, �,
),

Bαγ,βδ(σ, σ ′,
, �) = −Cγα,βδ(σ
′, σ, �,
), (A.6)

Cαγ,βδ(σ, σ ′,
, �) = −Bγα,δβ(σ ′, σ, �,
).

Further, let us presume that the Lax connection takes a value in the Lie algebra g of some
group G. Let us then presume that the generators of the algebra g are TA,A = 1, . . . , dim(G),
with the following structure: [TA, TB] = f C

AB TC . Then we can write A in the form

A(σ,
) = JA
σ (σ,
)TA (A.7)

and also

Aαγ,βδ(σ,
, �) = AAB(σ,
,�)(TA)αβ(TB)γ δ,

Bαγ,βδ(σ, σ ′
,�) = BAB(σ, σ ′,
, �)(TA)αβ(TB)γ δ, (A.8)

Cαγ,βδ(σ, σ ′,
, �) = CAB(σ, σ ′,
, �)(TA)αβ(TB)γ δ.

Then the Poisson bracket (A.5) can be written as{
JA

σ (σ,
), JB
σ (σ ′, �)

} = AAB(σ,
,�)δ(σ − σ ′)

+ BAB(σ, σ ′,
, �)∂σ ′δ(σ − σ ′) + CAB(σ, σ ′,
, �)∂σ δ(σ − σ ′) (A.9)

and relations (A.6) take an alternative form:

AAB(σ,
,�) = −ABA(σ, �,
),

BAB(σ, σ ′,
, �) = −CBA(σ ′, σ, �,
).
(A.10)

Let us introduce the matrices rαγ,βδ(σ,
, �), sαγ,βδ(σ,
, �) defined as

sαγ,βδ(σ,
, �) = 1
2 (Bαγ,β,δ(σ, σ,
, �) − Cαγ,βδ(σ, σ,
, �))

rαγ,βδ(σ,
, �) = 1
2 (Bαγ,βδ(σ, σ,
, �) + Cαγ,βδ(σ, σ,
, �)) + r̂αγ,βδ(σ,w, v),

(A.11)

or alternatively

sAB(σ,
,�) = 1
2 (BAB(σ, σ,
,�) − CAB(σ, σ,
,�))

= sBA(σ, �,
)
(A.12)

rAB(σ,
,�) = 1
2 (BAB(σ, σ,
,�) + CAB(σ, σ,
,�)) + r̂AB(σ,
, �))

= −rBA(σ, �,
),
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where r̂AB(σ,
, �) is a solution of the inhomogeneous first-order differential equation:

∂σ r̂AB + r̂DBf A
DC JD

σ (
) + r̂ADf B
DC JC

σ (�) = �AB, (A.13)

where

�AB(σ,
,�) = AAB(σ,
,�) − ∂u(B(σ, u,
,�) + C(u, σ,
,�))AB
u=σ

− BAC(σ, σ,
,�)f B
CD JD

σ (σ, �) + JC
σ (σ,
)f A

CD CDB(σ, σ,
,�). (A.14)

The significance of matrices s and r is that with their help, we can write the Poisson bracket
(A.5) in the form [59]

{Aαβ(σ,
),Aγ δ(σ
′, �)} = (∂σ rαγ,βδ(σ,
, �) − ∂σ sαγ,βδ(σ,
, �))δ(σ − σ ′)

+ [(rαγ,σδ(σ,
, �) − sαγ,σδ(σ,
, �))Aσβ(σ,
)

− Aασ (σ,
)(rσγ,βδ(σ,
, �) − sσγ,βδ(σ,
, �))]δ(σ − σ ′)
+ [(rαγ,βσ (σ,
, �) + sαγ,βσ (σ,
, �))Aσδ(�, σ )

− Aγ σ (�, σ )(rασ,βδ(σ,
, �) + sασ,βδ(σ,
, �))]δ(σ − σ ′)
− 2sαγ,βδ(σ,
, �)∂σ δ(σ − σ ′) (A.15)

or alternatively{
JA

σ (σ,
), JB
σ (σ ′, �)

} = (r − s)CB(σ,
,�)f A
CD JD

σ (σ,
)δ(σ − σ ′)

+ (r + s)AC(σ,
,�)f B
CD JD

σ (σ, �)δ(σ − σ ′)
+ ∂σ (r − s)AB(σ,
,�)δ(σ − σ ′) − 2sAB(σ,
,�)∂σ δ(σ − σ ′). (A.16)

Using the form of the Poisson bracket (A.15), we can calculate the algebra of monodromy
matrices with distinct intervals

{Tαβ(σ, σ ′,
), Tγ δ(ξ, ξ ′, �)} = Tασ1(σ, x0,
)Tγ σ2(ξ, x0, �)

× [r(x0,
, �) + ε(σ − ξ)s(x0,
, �)]σ1σ2,ρ1ρ2Tρ1β(x0, σ
′,
)Tρ2,δ(x0, ξ

′, �)

− Tασ1(σ, y0,
)Tγ σ2(ξ, y0, �)[r(y0,
, �) + ε(ξ ′ − σ ′)s(y0,
, �)]σ1σ2,ρ1ρ2

× Tρ1β(y0, σ
′,
)Tρ2δ(y0, ξ

′, �), (A.17)

where ε(x) = sign(x) and where we presume that σ and ξ are larger than σ ′ and
ξ ′, x0 = min(σ, ξ), y0 = max(σ ′, ξ ′). It is important to note that in the non-ultralocal
case of the algebra (A.17), due to the presence of the s-term, the function

	(1)(σ, σ ′, ξ, ξ ′,
, �) = {Tαβ(σ, σ ′,
), Tγ δ(ξ, ξ ′, �)} (A.18)

is well defined and continuous where σ, σ ′, ξ, ξ ′ are all distinct, but it has discontinuities
proportional to 2s across the hyperplanes corresponding to some of σ, σ ′, ξ, ξ ′ being equal.
If we want to define the Poisson bracket of transfer matrices for coinciding intervals
(σ = ξ, σ ′ = ξ ′) or adjacent intervals (σ ′ = ξorσ = ξ ′), then we require the value of
the discontinuous matrix-valued function 	(1) at its discontinuities. It was shown in [60] that
requiring anti-symmetry of the Poisson bracket and the derivation rule to hold imposes the
symmetric definition of 	(1) at its discontinuous points. For example, at σ = ξ we must define

	(1)(σ, σ ′, σ, ξ ′,
, �) = lim
ε→0+

1
2 (	(1)(σ, ξ, σ + ε, ξ ′,
, �) + 	(1)(σ, σ ′, σ − ε, ξ ′,
, �))

(A.19)

and likewise for all other possible coinciding endpoints. This definition of 	(1) at its
discontinuities implies a definition of the Poisson bracket between transition matrices for
coinciding and adjacent intervals that is consistent with the anti-symmetry of the Poisson
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bracket and the derivation rule. However as was shown in [59]7 this definition of the Poisson
bracket {Tαβ(
), Tγ δ(�)} does not satisfy the Jacobi identity so that in fact no strong definition
of the bracket {Tαβ(
), Tγ δ(�)} with coinciding or adjacent intervals can be given without
violating the Jacobi identity. However, as was shown in [59] it is possible to give a weak
definition of this bracket for coinciding or adjacent intervals as well. We are not going into
the details of the procedure; an interesting reader can read the original paper [59] or the more
recent one [61]. Let us now define

�αβ(
) = Tαβ(∞,−∞,
). (A.20)

Using the regularization procedure developed in [59], one can then show that the Poisson
bracket between �αβ(
) and �γδ(�) takes the form

{�αβ(
),�γδ(�)} = rαγ,σ1σ2(
, �)�σ1β(
)�σ2δ(�) − �ασ1(
)�γσ2(�)rσ1σ2,βδ(
, �)

+ �ασ1(
)sσ1γ,βσ2(
, �)�σ2δ(�) − �γσ1(�)sασ1,βσ2(
, �)�σ2β(
), (A.21)

where r(
, �) ≡ limσ→∞ r(
, �, σ ) and s(
, �) ≡ limσ→∞ s(
, �, σ ). Using (A.21), we
finally obtain

{Tr�(
), Tr�(�)} = {�αα(
),�γγ (�)} = rαγ,σ1σ2(
, �)�σ1α(
)�σ2γ (�)

− rαγ,σ1σ2(
, �)�σ1α(
)�σ2γ (�) + �ασ1(
)sσ1γ,ασ2(
, �)�σ2γ (�)

−�ασ1(
)sσ1γ,ασ2(
, �)�σ2γ (�) = 0. (A.22)

In other words, we obtain the fact that the theory contains an infinite number of conserved
charges that are in involution. This fact implies a classical integrability of given theory.
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